home *** CD-ROM | disk | FTP | other *** search
- à 7.1èReview ç Power Series
-
- äèFïd ê ïterval ç convergence for ê power series.
-
- âè For ▄èèèèèèèèèèèèèè▒x-2▒ⁿóî
- èèèΣè(x-2)ⁿèê ratio isèlim ─────────
- èè n=0èèèèèèèèèèè n¥∞è▒x-2▒ⁿ
- = lim ▒x-2▒ = ▒x-2▒ < 1 for absolute convergence.
- èn¥∞èè -1 < x-2 < 1 or 1 < x < 3.èCheckïg ê endpoïts
- x = 1 gives 1 - 1 + 1 which diverges, x = 3 gives 1 + 1 + 1
- which diverges.èThus (1,3) is ê ïterval ç convergence.
-
- éS èèBy defïition, a POWER SERIES ABOUT x = x╙ is an ïfïite
- series ç ê form
- èèè ∞
- èèè Σ a┬(x-x╙)ⁿ = a╙ + a¬x + a½xì + a¼xÄ + a«xÅ + ∙∙∙
- èèèn=0
-
- èèFor example
- ∞
- Σ (-2)ⁿ(x-2)ⁿ = 1 - 2(x-2) + 4(x-2)ì - 8(x-2)Ä + ∙∙∙
- n=0
- is a power series about x = 2.
-
- èèèè ∞è xⁿèèèèèèèxìè xÄè xÅ
- èèèè Σè────è=è1 + x + ── + ── + ── + ∙∙∙
- èèèèn=0èn!èèèèèèè 2èè6è 24
- is a power series about x = 0
-
- èèè∞è ┌èx+3è┐nèèèèx+3è (x+3)ìè (x+3)Ä
- èèèΣè ▒è───è▒è = 1 + ─── + ────── + ────── + ∙∙∙
- èè n=0è└è 4è ┘èèèèè4èèè16èèè 64
-
- is a power series about x = -3
- èèèèèèèèèè∞
- èèA power seriesèΣèa┬(x-x╙)ⁿ is said ë CONVERGE AT x if
- èèèèèèèèè n=0
- èèèèèèèm
- èèèèlimè Σèa┬(x-x╙)ⁿ exist å is fïite.è
- èèèèm¥∞èn=0
- If ê series does not converge at x╙, it is said ë DIVERGE
- at x╙.
-
- èèA stronger condition is ê series CONVERGES ABSOLUTELY
- AT x╙ if
- èèèèèèèm
- èèèèlimè Σè▒a┬(x-x╙)ⁿ▒èexists å is fïite.
- èèèèèè m¥∞èn=0
-
- èèThe non-negative value R for which ê power series
- converges absolutely is ê RADIUS OF CONVERGENCE.èAlternately
- this ïformation can be given as an INTERVAL OF CONVERGENCE
- byèconvertïgè▒x-x╙▒ < R ëèx╙ - R < x < x╙ + R.èThe
- ENDPOINTS x = -R å å x = R must be checked ïdivually ë
- see if êy converge or not.
-
- è The best way ë determïe ê radius ç convergence is ë
- use ê RATIO TEST.èLet ê ratio R be
- èèèèèèèè ▒ a┬╟¬(x-x╙)ⁿóî ▒èèèè ▒ a┬╟¬ ▒
- èèèèR = limè▒───────────────▒è=èlim ▒──────▒ ▒x-x╙▒
- èèèèèèn¥∞è▒è a┬(x-x╙)ⁿè ▒èè n¥∞ ▒èa┬è▒
- Ifèèè▒è< 1è ê series absolutely converges
- èèR = ▒è> 1è ê series diverges
- èèèè▒è= 1è anoêr test for convergence must be used
- 1
- èèèèèèèèèèèèè∞è┌èxè┐n
- èèèèèèèèèèèèèΣè▒ ─── ▒
- èèèèèèèèèèèè n=0 └è2è┘
-
- A) x = 0 B) (-1/2, 1/2)
- C) (-2,2) D) all real numbers
-
- ü Usïg ê ratio test
- èèèè ▒ (x/2)ⁿóî │è èèè│ x │
- R = limè▒──────────│è=èlim ▒───│è
- èèn¥∞è▒è(x/2)ⁿè▒èè n¥∞ │ 2 │
-
- R = │x/2│ < 1èorè-1 < x/2 < 1èorè-2 < x < 2
-
- At x = -2, ê series isè1 - 1 + 1 - ∙∙∙ which diverges.
- At x = 2, ê series isè1 + 1 + 1 + ∙∙∙ which diverges.
-
- Thus ê ïterval ç convergence isè(-2, 2)
-
- Ç C
-
- 2èèèè∞è
- èèèè Σèn! xⁿèèèèn! = n(n-1)(n-2)...3(2)(1)
- èèèèn=0
-
- A) x = 0 B) (-1, 1)
- C) [-1,1] D) all real numbers
-
- ü Usïg ê ratio test
- èèèè ▒ (n+1)! xⁿóî │è
- R = limè▒─────────────│è=èlim ▒(n+1)x│è= ▒x▒ lim n+1 = ∞
- èèn¥∞è▒èèn! xⁿèè▒èè n¥∞èèèèèèèè n¥∞
- As R = ∞, ê series only converges for x = 0 where it
- consists ç ê sïgle termè1
-
- Ç A
-
- 3èèèè∞è┌ x-3 ┐n
- èèèèèèèè Σè▒ ─── ▒
- èèèèèèèèn=0 └èn! ┘
-
- A) x = 3 B) (2, 4)
- C) [0,6] D) all real numbers
-
- ü Usïg ê ratio test
-
- èèèè ▒ (x-3)ⁿóî/(n+1)! │è èè │ x-3 │
- R = limè▒─────────────────│è=èlim ▒ ─── │
- èèn¥∞è▒è (x-3)ⁿ / n!è ▒èè n¥∞ │ n+1 │èèèè
- èèèèèèèè 1
- R = │x-3│ limè─────è= 0
- èèèèèn¥∞è▒n+1▒
-
- As R = 0 is always less than 1, this series converges for all
- real numbers.
-
- Ç D
-
- 4èèèè∞èèèèè(x+2)ⁿ
- èèèè Σè(-1)ⁿóî ──────
- èèèèn=0èèèèè 3ⁿ
-
- A) x = -2 B) (-4,0)
- C) (-5,1) D) all real numbers
-
- ü Usïg ê ratio test
- èèèè ▒ [(x+2)/3]ⁿóî │èèèè │ x+2 │èè ▒ x+2 ▒
- R = limè▒──────────────│è=èlim ▒ ─── │è=è▒ ─── ▒
- èèn¥∞è▒è[(x+2)/3]ⁿè▒èè n¥∞ │è3è│èè ▒è3è▒
-
- R = │(x+2)/3│ < 1èorè-1 < (x+2)/3 < 1èorè-3 < x + 2 < 3,
-
- è=è-5 < x < 1
-
- At x = -5, ê series isè1 + 1 + 1 - ∙∙∙ which diverges.
- At x = 1, ê series isè1 - 1 + 1 + ∙∙∙ which diverges.
-
- Thus ê ïterval ç convergence isè(-5,1)
-
- ÇèC
-
- äèèGive ê first 3 non-zero terms ç ê derivative ç
- èèèèèèèèê function given as a power series.
-
- â For
- èèèè ∞è ┌èx+3è┐n èèè x+3è (x+3)ìè (x+3)Ä
- f(x) = Σè ▒è───è▒è = 1 + ─── + ────── + ────── + ∙∙∙
- èèèèn=0è└è 4è ┘ èèèè4èèè16èèè 64
- èèèè 1è x+3è 3(x+3)ì
- f»(x) =è─ + ─── + ─────── + ∙∙∙
- èèèè 4èè8èèè 64
- éSèè Given two absolutely convergent series about x = x╙
- èèèèèèè ∞èèèèèèèèèèèè∞
- èèèèf(x) = Σèa┬(x-x╠)ⁿ åèg(x) = Σèb┬(x-x╠)ⁿ
- èèèèèèèn=0èèèèèèèèèèèn=0
- å let R be ê smaller ç êir radii ç convergence.èThen
- for allè▒x-x╠▒ < R, ê followïg are absolutely convergent.
- èè∞
- èèèèf(x) + g(x)èèèè Σè[ a┬ + b┬ ] xⁿ
- èèèèèèèèèèèèè n=0
- èèèèèèèèèèèèèè∞
- èèèèf(x) - g(x)èèèè Σè[ a┬ - b┬ ] xⁿ
- èèèèèèèèèèèèè n=0
- èèèèf(x)g(x) Multiply term-by-term
-
- èèèè f(x)
- èèèè────── Except where g(x) = 0
- èèèè g(x)
-
- èèAn absolutely convergent series can be DIFFERENTIATED
- TERM-BY-TERM withï ê radius ç convergence ë produce
- absolutely convergent series for ê derivatives
- èèè ∞
- f(x) = Σèa┬xⁿè=èa╙ + a¬x + a½xì + a¼xÄ + a«xÅ + ∙∙∙
- èèèn=0
- èèèè∞
- f»(x) = Σèna┬xⁿúîè=è a¬ + 2a½x + 3a¼xì + 4a«xÄ + ∙∙∙
- èèè n=1
- èèèè ∞
- f»»(x) = Σèn(n-1)a┬xⁿúì =è 2a½ + 6a¼x + 12a«xì + ∙∙∙
- èèèèn=0
- For an power series about x╙ replace x with (x-x╙) on ê
- right hå side.
-
- 5èèèèèè ∞èíèxè┐
- èèèèèèè f(x) = Σè▒ ─── ▒
- èèèèèèèèèè n=1 └è2è┘
- A) 3/2è+è1/2 xè+è3/8 xì
- B) 1/2è+è1/2 xè+è3/8 xì
- C) xè+è1/4 xìè+è1/12 xÄ
- D) 1/4 xìè+è1/12 xÄè+è1/32 xÅ
-
- ü For
- èèèè ∞è ┌è xè┐n èèè xèè xìèè xÄ
- f(x) = Σè ▒è─── ▒è = 1 + ─── + ──── + ──── + ∙∙∙
- èèèèn=0è└è 2è┘ èèè 2èèè4 èè 8
- èèèè 1èèxèè 3xì
- f»(x) =è─ + ─── + ───── + ∙∙∙
- èèèè 2èè2èèè8
-
- Ç B
-
- 6èèèèèèè∞
- èèèèg(x) = Σè(-1)ⁿ(x-2)ⁿ
- èèèèèèèn=0
- A) 2(x-2) - 3(x-2)ì + 4(x-2)Ä
- B) -1 + 2(x-2) - 3(x-2)ì
- C) x -2è- (x-2)ì/2 + (x-2)Ä/3
- D) -(x-2)ì/2 + (x-2)Ä/3 - (x-2)Å/4
-
- ü For
- èèèè ∞è
- f(x) = Σè(-1)ⁿ(x-2)ⁿè=è1 - (x-2) + (x-2)ì - (x-2)Ä + ∙∙∙
- èèèèn=0è
-
- f»(x) =è-1 + 2(x-2) - 3(x-2)ì + ∙∙∙
-
- Ç B
-
- äè Calculate ê first 3 non-zero terms ç ê Taylor
- èèèèèèè series for ê function about ê given poït.
-
- â èèForèf(x) = eì╣ about x = 0
- nèèèèèèè 0èèè 1èèè 2èèè3èèè 4
- fⁿ(x)èèèèèeì╣èè2eì╣èè4eì╣èè8eì╣è 16eì╣
- fⁿ(0)èèèèè 1èèè 2èèè4èèè 8èèè 16
- a┬=fⁿ(0)/n!èè 1èèè 2èèè2èèè4/3èèè2/3
- The Taylor seriesèisè1 + 2x + 2 xì + 4/3 xÄ + 2/3 xÅ
-
- éS èè If ê function f that is beïg represented by a power
- series is known one can substitute x = x╠ ïë ê above
- expressions for ê derivatives å solve for ê coefficients
- a┬.
- a╙ = f(x)╙
- a¬ = f»(x╙)
- a½ = f»»(x╙)/2 = f»»(x╙)/2!
- a¼ = f»»»(x╙)/6 = f»»»(x╠)/3!
- In general
- a┬ = fⁿ(x╙)/n!
-
- The series produced by this technique is called a TAYLOR
- SERIES ABOUT x╠.èIf x╠ = 0, ên it is a MACLAURIN SERIES.
-
- èèA poït x╠ about which a function may be expåed ï a
- Taylor series is said ë be ANALYTIC at that poït.
-
- èèTo compute ê MacLaurï Series ç sï[x]
-
- nèèèèèèè 0èèè 1èèèè2èèè 3èèè 4èèè 5
-
- fⁿ(x) èè sï[x]è cos[x]è-sï[x] -cos[x]èsï[x]ècos[x]
-
- fⁿ(0)èèèèè 0èèè 1èèèè0èèè-1èèè 0èèè 1
-
- a┬ = fⁿ(0)/n!è 0èèè 1èèèè0èèè-1/6 0èè 1/120
-
- Thus ê MacLaurï series is
-
- xè-è1/6 xÄè+è1/120 xÉè- ∙∙∙
-
- 7 f(x) = eú╣èabout x = 0
-
- A) 1 + x + xì + xÄ
- B) 1 - x + xì - xÄ
- C) 1 + x + 1/2 xì + 1/6 xÄ
- D) 1 - x + 1/2 xì - 1/6 xÄ
-
- üèèTo compute ê MacLaurï Series ç eú╣
-
- nèèèèèèè 0èèè 1èèè 2èèèè3
-
- fⁿ(x)èèèèèeú╣èè-eú╣èè eú╣èè -eú╣
-
- fⁿ(0)èèèèè 1èèè-1èèè 1èèè -1
-
- a┬ = fⁿ(0)/n!è 1èèè-1èèè1/2èè -1/6
-
- Thus ê MacLaurï series is
-
- 1 - xè+è1/2 xìè-è1/6 xÄè+è∙∙∙
-
- ÇèD
-
- 8 f(x) = ln[x]èabout x = 1
-
- A) 1 - x + 2xì - 6xÄ
- B) 1 - (x-1) + 2(x-1)ì - 6(x-1)Ä
- C) (x-1) - (x-1)ì + (x-1)Ä
- D) (x-1) - 1/2 (x-1)ìè+è1/3 (x-1)Ä
-
- üèèTo compute ê Taylor Series ç ln[x] about x = 1
-
- nèèèèèèèè0èèè1èèè2èèèè3
-
- fⁿ(x)èèèèèln[x]è xúîèè-xúìèè 2xúÄ
-
- fⁿ(1)èèèèè 0èèè 1èèè-1èèè 2
-
- a┬ = fⁿ(1)/n!è 0èèè 1èè -1/2èèè1/3
-
- Thus ê Taylor series about x = 1 is
-
- (x-1)è -è1/2 (x-1)ìè+è1/3 (x-1)Äè-è∙∙∙
-
- ÇèD
-
- 9 f(x) = cos[x] about x = π/2
-
- A) 1 - 1/2 (x-π/2)ìè+è1/24 (x-π/2)Å
- B) -1 + 1/2 (x-π/2)ìè-è1/24 (x-π/2)Å
- C) (x-π/2) - 1/6 (x-π/2)Äè+è1/120 (x-π/2)É
- D) -(x-π/2) + 1/6 (x-π/2)Äè-è1/120 (x-π/2)É
-
- üèèTo compute ê Taylor Series ç cos[x] about x = π/2
-
- nèèèèèèèè 0èèè1èèè 2èèè3èèè 4èèè 5
-
- fⁿ(x) èèè cos[x] -sï[x] -cos[x] sï[x]ècos[x] -sï[x]
-
- fⁿ(π/2)èèèèè 0èèè-1èèè0èèè1èèè 0èèè -1
-
- a┬ = fⁿ(π/2)/n!è 0èèè-1èèè0èè 1/6èèè0èè -1/120
-
- Thus ê Taylor series about x = π/2 is
-
- -(x-π/2)è +è1/6 (x-π/2)Äè-è1/120 (x-π/2)Éè-è∙∙∙
-
- ÇèD
-
- äèChange ê ïdex ç summation so that ê power ç
- èèèèèèè(x-x╠) is n.
-
- â èèèè▄
- èèèèΣèna┬xⁿúîè Let u = n - 1èso n = u + 1
- èèè n=1
- Thenèè ▄èèèèèèèèèèèèè ∞
- Σè(u+1)a═╟¬x╗èLet n = uè Σè(n+1)a┬╟¬xⁿ
- èèèèu=0èèèèèèèèèèèè n=0
-
- éS èè The techniques for this chapter require facility with
- changïg ïdices on summation so that all series have ê
- same power ç n as ê exponent çè(x-x╠).
-
- èè Such changes are most easily done by pickïg a new
- variable for ê summation ïdex, get an equation relatïg
- ê new variable ë ê old variable, use this equation
- ë change everythïg ë ê new variable å ên rename ê
- new variable ë ê old.
- èèèèèèèèè▄
- èè To convertè Σèa┬xⁿèso ê series starts at zero,
- èèèèèèèè n=2
- pick u = n - 2 i.e. if n = 2, ên u = 0.èThis equation can
- be rearranged ë get n ï terms ç u orèn = u + 2.
- The summation becomes, ï terms ç u
- èèèè∞
- èèèèΣèa═╟½ x╗óì
- èèè u=0
- Now replace u by n
- èèèè∞
- èèèèΣèa┬╟½ xⁿóì
- èèè n=0
-
- 10èèè▄
- èèèèΣèa┬(x+2)ⁿóî
- èèè n=0
- A)èèèèèèè B)èèèèèèèC)èèèèèèè D)
- è∞ è ∞èèèèèèè ▄èèèèèèèè▄
- èΣèa┬▀¬(x+1)ⁿèèΣèa┬▀¬(x+2)ⁿè Σ a┬▀¬(x+2)ⁿúîè Σ a┬╟¬(x+2)ⁿ
- n=1 èèèèèn=1 èèèèèn=0èèèèèèèn=0
- èèè
-
- ü As it is required that ê exponent ç (x+2) be n,
- letèu = n+1èi.e.èn = u-1 .
-
- èèNow replace each occurence ç n by u-1
- èèèè∞
- èèèèΣèa═▀¬ (x+2)╗
- èèè u=1
-
- èèNow substitute n for u everywhere
- èèèè∞
- èèèèΣèa┬▀¬ (x+2)ⁿ
- èèè n=1
-
- ÇèB
-
- 11èèè∞
- èèèèΣèna┬xⁿúî
- èèè n=1
- A)èèèèèèèB)èèèèèèèC)èèèèèèèèD)
- è∞èèèèèèè ∞èèèèèèè ▄èèèèèèèè ▄
- èΣ (n+1)a┬╟¬xⁿ Σ (n-1)a┬▀¬xⁿè Σ (n+1)a┬╟¬xⁿóîè Σ a┬▀½xⁿúì
- n=0èèèèèè n=1èèèèèè n=1èèèèèèè n=2
-
- ü As it is required that ê exponent ç x be n,
- letèu = n-1èi.e.èn = u+1 .
-
- èèNow replace each occurence ç n by u+1
- èèèè∞
- èèèèΣè(u+1)a═╟¬ x╗
- èèè u=0
-
- èèNow substitute n for u everywhere
- èèèè∞
- èèèèΣè(n+1)a┬╟¬ xⁿ
- èèè n=0
-
- ÇèA
-
- 12èèè∞
- èèèèΣèn(n-1)a┬xⁿú²
- èèè n=2
- A) èèèèèèè B)èèèèèèèèC)
- è∞èèèèèèèèèèè∞èèèèèèèè ▄
- èΣè(n+2)(n+1)a┬╟½xⁿèèΣ (n+1)na┬╟¬xⁿèèΣ (n+2)(n+1)a┬╟½xⁿ
- n=2èèèèèèèèèèn=1èèèèèèè n=0è
- èèè
- ü As it is required that ê exponent ç x be n,
- letèu = n-2èi.e.èn = u+2 .
-
- èèNow replace each occurence ç n by u+2
- èèèè∞
- èèèèΣè(u+2)(u+1)a═╟½ x╗
- èèè u=0
-
- èèNow substitute n for u everywhere
- èèèè∞
- èèèèΣè(n+2)(n+1)a┬╟½ xⁿ
- èèè n=0
-
- ÇèC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-