home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Multimedia Differential Equations
/
Multimedia Differential Equations.ISO
/
diff
/
chapter7.1p
< prev
next >
Wrap
Text File
|
1996-08-13
|
11KB
|
453 lines
à 7.1èReview ç Power Series
äèFïd ê ïterval ç convergence for ê power series.
âè For ▄èèèèèèèèèèèèèè▒x-2▒ⁿóî
èèèΣè(x-2)ⁿèê ratio isèlim ─────────
èè n=0èèèèèèèèèèè n¥∞è▒x-2▒ⁿ
= lim ▒x-2▒ = ▒x-2▒ < 1 for absolute convergence.
èn¥∞èè -1 < x-2 < 1 or 1 < x < 3.èCheckïg ê endpoïts
x = 1 gives 1 - 1 + 1 which diverges, x = 3 gives 1 + 1 + 1
which diverges.èThus (1,3) is ê ïterval ç convergence.
éS èèBy defïition, a POWER SERIES ABOUT x = x╙ is an ïfïite
series ç ê form
èèè ∞
èèè Σ a┬(x-x╙)ⁿ = a╙ + a¬x + a½xì + a¼xÄ + a«xÅ + ∙∙∙
èèèn=0
èèFor example
∞
Σ (-2)ⁿ(x-2)ⁿ = 1 - 2(x-2) + 4(x-2)ì - 8(x-2)Ä + ∙∙∙
n=0
is a power series about x = 2.
èèèè ∞è xⁿèèèèèèèxìè xÄè xÅ
èèèè Σè────è=è1 + x + ── + ── + ── + ∙∙∙
èèèèn=0èn!èèèèèèè 2èè6è 24
is a power series about x = 0
èèè∞è ┌èx+3è┐nèèèèx+3è (x+3)ìè (x+3)Ä
èèèΣè ▒è───è▒è = 1 + ─── + ────── + ────── + ∙∙∙
èè n=0è└è 4è ┘èèèèè4èèè16èèè 64
is a power series about x = -3
èèèèèèèèèè∞
èèA power seriesèΣèa┬(x-x╙)ⁿ is said ë CONVERGE AT x if
èèèèèèèèè n=0
èèèèèèèm
èèèèlimè Σèa┬(x-x╙)ⁿ exist å is fïite.è
èèèèm¥∞èn=0
If ê series does not converge at x╙, it is said ë DIVERGE
at x╙.
èèA stronger condition is ê series CONVERGES ABSOLUTELY
AT x╙ if
èèèèèèèm
èèèèlimè Σè▒a┬(x-x╙)ⁿ▒èexists å is fïite.
èèèèèè m¥∞èn=0
èèThe non-negative value R for which ê power series
converges absolutely is ê RADIUS OF CONVERGENCE.èAlternately
this ïformation can be given as an INTERVAL OF CONVERGENCE
byèconvertïgè▒x-x╙▒ < R ëèx╙ - R < x < x╙ + R.èThe
ENDPOINTS x = -R å å x = R must be checked ïdivually ë
see if êy converge or not.
è The best way ë determïe ê radius ç convergence is ë
use ê RATIO TEST.èLet ê ratio R be
èèèèèèèè ▒ a┬╟¬(x-x╙)ⁿóî ▒èèèè ▒ a┬╟¬ ▒
èèèèR = limè▒───────────────▒è=èlim ▒──────▒ ▒x-x╙▒
èèèèèèn¥∞è▒è a┬(x-x╙)ⁿè ▒èè n¥∞ ▒èa┬è▒
Ifèèè▒è< 1è ê series absolutely converges
èèR = ▒è> 1è ê series diverges
èèèè▒è= 1è anoêr test for convergence must be used
1
èèèèèèèèèèèèè∞è┌èxè┐n
èèèèèèèèèèèèèΣè▒ ─── ▒
èèèèèèèèèèèè n=0 └è2è┘
A) x = 0 B) (-1/2, 1/2)
C) (-2,2) D) all real numbers
ü Usïg ê ratio test
èèèè ▒ (x/2)ⁿóî │è èèè│ x │
R = limè▒──────────│è=èlim ▒───│è
èèn¥∞è▒è(x/2)ⁿè▒èè n¥∞ │ 2 │
R = │x/2│ < 1èorè-1 < x/2 < 1èorè-2 < x < 2
At x = -2, ê series isè1 - 1 + 1 - ∙∙∙ which diverges.
At x = 2, ê series isè1 + 1 + 1 + ∙∙∙ which diverges.
Thus ê ïterval ç convergence isè(-2, 2)
Ç C
2èèèè∞è
èèèè Σèn! xⁿèèèèn! = n(n-1)(n-2)...3(2)(1)
èèèèn=0
A) x = 0 B) (-1, 1)
C) [-1,1] D) all real numbers
ü Usïg ê ratio test
èèèè ▒ (n+1)! xⁿóî │è
R = limè▒─────────────│è=èlim ▒(n+1)x│è= ▒x▒ lim n+1 = ∞
èèn¥∞è▒èèn! xⁿèè▒èè n¥∞èèèèèèèè n¥∞
As R = ∞, ê series only converges for x = 0 where it
consists ç ê sïgle termè1
Ç A
3èèèè∞è┌ x-3 ┐n
èèèèèèèè Σè▒ ─── ▒
èèèèèèèèn=0 └èn! ┘
A) x = 3 B) (2, 4)
C) [0,6] D) all real numbers
ü Usïg ê ratio test
èèèè ▒ (x-3)ⁿóî/(n+1)! │è èè │ x-3 │
R = limè▒─────────────────│è=èlim ▒ ─── │
èèn¥∞è▒è (x-3)ⁿ / n!è ▒èè n¥∞ │ n+1 │èèèè
èèèèèèèè 1
R = │x-3│ limè─────è= 0
èèèèèn¥∞è▒n+1▒
As R = 0 is always less than 1, this series converges for all
real numbers.
Ç D
4èèèè∞èèèèè(x+2)ⁿ
èèèè Σè(-1)ⁿóî ──────
èèèèn=0èèèèè 3ⁿ
A) x = -2 B) (-4,0)
C) (-5,1) D) all real numbers
ü Usïg ê ratio test
èèèè ▒ [(x+2)/3]ⁿóî │èèèè │ x+2 │èè ▒ x+2 ▒
R = limè▒──────────────│è=èlim ▒ ─── │è=è▒ ─── ▒
èèn¥∞è▒è[(x+2)/3]ⁿè▒èè n¥∞ │è3è│èè ▒è3è▒
R = │(x+2)/3│ < 1èorè-1 < (x+2)/3 < 1èorè-3 < x + 2 < 3,
è=è-5 < x < 1
At x = -5, ê series isè1 + 1 + 1 - ∙∙∙ which diverges.
At x = 1, ê series isè1 - 1 + 1 + ∙∙∙ which diverges.
Thus ê ïterval ç convergence isè(-5,1)
ÇèC
äèèGive ê first 3 non-zero terms ç ê derivative ç
èèèèèèèèê function given as a power series.
â For
èèèè ∞è ┌èx+3è┐n èèè x+3è (x+3)ìè (x+3)Ä
f(x) = Σè ▒è───è▒è = 1 + ─── + ────── + ────── + ∙∙∙
èèèèn=0è└è 4è ┘ èèèè4èèè16èèè 64
èèèè 1è x+3è 3(x+3)ì
f»(x) =è─ + ─── + ─────── + ∙∙∙
èèèè 4èè8èèè 64
éSèè Given two absolutely convergent series about x = x╙
èèèèèèè ∞èèèèèèèèèèèè∞
èèèèf(x) = Σèa┬(x-x╠)ⁿ åèg(x) = Σèb┬(x-x╠)ⁿ
èèèèèèèn=0èèèèèèèèèèèn=0
å let R be ê smaller ç êir radii ç convergence.èThen
for allè▒x-x╠▒ < R, ê followïg are absolutely convergent.
èè∞
èèèèf(x) + g(x)èèèè Σè[ a┬ + b┬ ] xⁿ
èèèèèèèèèèèèè n=0
èèèèèèèèèèèèèè∞
èèèèf(x) - g(x)èèèè Σè[ a┬ - b┬ ] xⁿ
èèèèèèèèèèèèè n=0
èèèèf(x)g(x) Multiply term-by-term
èèèè f(x)
èèèè────── Except where g(x) = 0
èèèè g(x)
èèAn absolutely convergent series can be DIFFERENTIATED
TERM-BY-TERM withï ê radius ç convergence ë produce
absolutely convergent series for ê derivatives
èèè ∞
f(x) = Σèa┬xⁿè=èa╙ + a¬x + a½xì + a¼xÄ + a«xÅ + ∙∙∙
èèèn=0
èèèè∞
f»(x) = Σèna┬xⁿúîè=è a¬ + 2a½x + 3a¼xì + 4a«xÄ + ∙∙∙
èèè n=1
èèèè ∞
f»»(x) = Σèn(n-1)a┬xⁿúì =è 2a½ + 6a¼x + 12a«xì + ∙∙∙
èèèèn=0
For an power series about x╙ replace x with (x-x╙) on ê
right hå side.
5èèèèèè ∞èíèxè┐
èèèèèèè f(x) = Σè▒ ─── ▒
èèèèèèèèèè n=1 └è2è┘
A) 3/2è+è1/2 xè+è3/8 xì
B) 1/2è+è1/2 xè+è3/8 xì
C) xè+è1/4 xìè+è1/12 xÄ
D) 1/4 xìè+è1/12 xÄè+è1/32 xÅ
ü For
èèèè ∞è ┌è xè┐n èèè xèè xìèè xÄ
f(x) = Σè ▒è─── ▒è = 1 + ─── + ──── + ──── + ∙∙∙
èèèèn=0è└è 2è┘ èèè 2èèè4 èè 8
èèèè 1èèxèè 3xì
f»(x) =è─ + ─── + ───── + ∙∙∙
èèèè 2èè2èèè8
Ç B
6èèèèèèè∞
èèèèg(x) = Σè(-1)ⁿ(x-2)ⁿ
èèèèèèèn=0
A) 2(x-2) - 3(x-2)ì + 4(x-2)Ä
B) -1 + 2(x-2) - 3(x-2)ì
C) x -2è- (x-2)ì/2 + (x-2)Ä/3
D) -(x-2)ì/2 + (x-2)Ä/3 - (x-2)Å/4
ü For
èèèè ∞è
f(x) = Σè(-1)ⁿ(x-2)ⁿè=è1 - (x-2) + (x-2)ì - (x-2)Ä + ∙∙∙
èèèèn=0è
f»(x) =è-1 + 2(x-2) - 3(x-2)ì + ∙∙∙
Ç B
äè Calculate ê first 3 non-zero terms ç ê Taylor
èèèèèèè series for ê function about ê given poït.
â èèForèf(x) = eì╣ about x = 0
nèèèèèèè 0èèè 1èèè 2èèè3èèè 4
fⁿ(x)èèèèèeì╣èè2eì╣èè4eì╣èè8eì╣è 16eì╣
fⁿ(0)èèèèè 1èèè 2èèè4èèè 8èèè 16
a┬=fⁿ(0)/n!èè 1èèè 2èèè2èèè4/3èèè2/3
The Taylor seriesèisè1 + 2x + 2 xì + 4/3 xÄ + 2/3 xÅ
éS èè If ê function f that is beïg represented by a power
series is known one can substitute x = x╠ ïë ê above
expressions for ê derivatives å solve for ê coefficients
a┬.
a╙ = f(x)╙
a¬ = f»(x╙)
a½ = f»»(x╙)/2 = f»»(x╙)/2!
a¼ = f»»»(x╙)/6 = f»»»(x╠)/3!
In general
a┬ = fⁿ(x╙)/n!
The series produced by this technique is called a TAYLOR
SERIES ABOUT x╠.èIf x╠ = 0, ên it is a MACLAURIN SERIES.
èèA poït x╠ about which a function may be expåed ï a
Taylor series is said ë be ANALYTIC at that poït.
èèTo compute ê MacLaurï Series ç sï[x]
nèèèèèèè 0èèè 1èèèè2èèè 3èèè 4èèè 5
fⁿ(x) èè sï[x]è cos[x]è-sï[x] -cos[x]èsï[x]ècos[x]
fⁿ(0)èèèèè 0èèè 1èèèè0èèè-1èèè 0èèè 1
a┬ = fⁿ(0)/n!è 0èèè 1èèèè0èèè-1/6 0èè 1/120
Thus ê MacLaurï series is
xè-è1/6 xÄè+è1/120 xÉè- ∙∙∙
7 f(x) = eú╣èabout x = 0
A) 1 + x + xì + xÄ
B) 1 - x + xì - xÄ
C) 1 + x + 1/2 xì + 1/6 xÄ
D) 1 - x + 1/2 xì - 1/6 xÄ
üèèTo compute ê MacLaurï Series ç eú╣
nèèèèèèè 0èèè 1èèè 2èèèè3
fⁿ(x)èèèèèeú╣èè-eú╣èè eú╣èè -eú╣
fⁿ(0)èèèèè 1èèè-1èèè 1èèè -1
a┬ = fⁿ(0)/n!è 1èèè-1èèè1/2èè -1/6
Thus ê MacLaurï series is
1 - xè+è1/2 xìè-è1/6 xÄè+è∙∙∙
ÇèD
8 f(x) = ln[x]èabout x = 1
A) 1 - x + 2xì - 6xÄ
B) 1 - (x-1) + 2(x-1)ì - 6(x-1)Ä
C) (x-1) - (x-1)ì + (x-1)Ä
D) (x-1) - 1/2 (x-1)ìè+è1/3 (x-1)Ä
üèèTo compute ê Taylor Series ç ln[x] about x = 1
nèèèèèèèè0èèè1èèè2èèèè3
fⁿ(x)èèèèèln[x]è xúîèè-xúìèè 2xúÄ
fⁿ(1)èèèèè 0èèè 1èèè-1èèè 2
a┬ = fⁿ(1)/n!è 0èèè 1èè -1/2èèè1/3
Thus ê Taylor series about x = 1 is
(x-1)è -è1/2 (x-1)ìè+è1/3 (x-1)Äè-è∙∙∙
ÇèD
9 f(x) = cos[x] about x = π/2
A) 1 - 1/2 (x-π/2)ìè+è1/24 (x-π/2)Å
B) -1 + 1/2 (x-π/2)ìè-è1/24 (x-π/2)Å
C) (x-π/2) - 1/6 (x-π/2)Äè+è1/120 (x-π/2)É
D) -(x-π/2) + 1/6 (x-π/2)Äè-è1/120 (x-π/2)É
üèèTo compute ê Taylor Series ç cos[x] about x = π/2
nèèèèèèèè 0èèè1èèè 2èèè3èèè 4èèè 5
fⁿ(x) èèè cos[x] -sï[x] -cos[x] sï[x]ècos[x] -sï[x]
fⁿ(π/2)èèèèè 0èèè-1èèè0èèè1èèè 0èèè -1
a┬ = fⁿ(π/2)/n!è 0èèè-1èèè0èè 1/6èèè0èè -1/120
Thus ê Taylor series about x = π/2 is
-(x-π/2)è +è1/6 (x-π/2)Äè-è1/120 (x-π/2)Éè-è∙∙∙
ÇèD
äèChange ê ïdex ç summation so that ê power ç
èèèèèèè(x-x╠) is n.
â èèèè▄
èèèèΣèna┬xⁿúîè Let u = n - 1èso n = u + 1
èèè n=1
Thenèè ▄èèèèèèèèèèèèè ∞
Σè(u+1)a═╟¬x╗èLet n = uè Σè(n+1)a┬╟¬xⁿ
èèèèu=0èèèèèèèèèèèè n=0
éS èè The techniques for this chapter require facility with
changïg ïdices on summation so that all series have ê
same power ç n as ê exponent çè(x-x╠).
èè Such changes are most easily done by pickïg a new
variable for ê summation ïdex, get an equation relatïg
ê new variable ë ê old variable, use this equation
ë change everythïg ë ê new variable å ên rename ê
new variable ë ê old.
èèèèèèèèè▄
èè To convertè Σèa┬xⁿèso ê series starts at zero,
èèèèèèèè n=2
pick u = n - 2 i.e. if n = 2, ên u = 0.èThis equation can
be rearranged ë get n ï terms ç u orèn = u + 2.
The summation becomes, ï terms ç u
èèèè∞
èèèèΣèa═╟½ x╗óì
èèè u=0
Now replace u by n
èèèè∞
èèèèΣèa┬╟½ xⁿóì
èèè n=0
10èèè▄
èèèèΣèa┬(x+2)ⁿóî
èèè n=0
A)èèèèèèè B)èèèèèèèC)èèèèèèè D)
è∞ è ∞èèèèèèè ▄èèèèèèèè▄
èΣèa┬▀¬(x+1)ⁿèèΣèa┬▀¬(x+2)ⁿè Σ a┬▀¬(x+2)ⁿúîè Σ a┬╟¬(x+2)ⁿ
n=1 èèèèèn=1 èèèèèn=0èèèèèèèn=0
èèè
ü As it is required that ê exponent ç (x+2) be n,
letèu = n+1èi.e.èn = u-1 .
èèNow replace each occurence ç n by u-1
èèèè∞
èèèèΣèa═▀¬ (x+2)╗
èèè u=1
èèNow substitute n for u everywhere
èèèè∞
èèèèΣèa┬▀¬ (x+2)ⁿ
èèè n=1
ÇèB
11èèè∞
èèèèΣèna┬xⁿúî
èèè n=1
A)èèèèèèèB)èèèèèèèC)èèèèèèèèD)
è∞èèèèèèè ∞èèèèèèè ▄èèèèèèèè ▄
èΣ (n+1)a┬╟¬xⁿ Σ (n-1)a┬▀¬xⁿè Σ (n+1)a┬╟¬xⁿóîè Σ a┬▀½xⁿúì
n=0èèèèèè n=1èèèèèè n=1èèèèèèè n=2
ü As it is required that ê exponent ç x be n,
letèu = n-1èi.e.èn = u+1 .
èèNow replace each occurence ç n by u+1
èèèè∞
èèèèΣè(u+1)a═╟¬ x╗
èèè u=0
èèNow substitute n for u everywhere
èèèè∞
èèèèΣè(n+1)a┬╟¬ xⁿ
èèè n=0
ÇèA
12èèè∞
èèèèΣèn(n-1)a┬xⁿú²
èèè n=2
A) èèèèèèè B)èèèèèèèèC)
è∞èèèèèèèèèèè∞èèèèèèèè ▄
èΣè(n+2)(n+1)a┬╟½xⁿèèΣ (n+1)na┬╟¬xⁿèèΣ (n+2)(n+1)a┬╟½xⁿ
n=2èèèèèèèèèèn=1èèèèèèè n=0è
èèè
ü As it is required that ê exponent ç x be n,
letèu = n-2èi.e.èn = u+2 .
èèNow replace each occurence ç n by u+2
èèèè∞
èèèèΣè(u+2)(u+1)a═╟½ x╗
èèè u=0
èèNow substitute n for u everywhere
èèèè∞
èèèèΣè(n+2)(n+1)a┬╟½ xⁿ
èèè n=0
ÇèC